COMPUTATION OF TURBULENT BOUNDARY LAYER
USING SIMILARITY SOLUTION
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1. Formulation of Universal Turbulent Boundary-Layer Equations. An arbitrary choice of the repre-
sentative family of skin friction or velocity profiles is used in the integral methods of turbulent boundary-
layer computations. If a two-layer semiemvirical scheme is used in computations, thenit becomes necessary
to carry out the laborious process of matching the inner and outer solutions in each case. The method of sim-
ilar solutions makes it possible to complete the matching process once and for all.

Reynolds? equation for plane, in»compressible, turbulent flow is used in the form
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where ¢ is the stream function for the mean flow; U, external flow velocity; T, total shear stress (sum of viscous
and eddy stresses); x, y, longitudinal and transverse coordinates, respectively; u,(y), starting profile for the
longitudinal velocity at the chosen initial point x =xy; p, fluid density.

We choose U (k) as the reference velocity for longitudinal velocities at different sections of the boundary
layer and the transverse length scale is the momentum thickness 6* *, I follows from the expansion of the
function 7 &, y) in terms of the transverse coordinate y
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that the usual shear stress reference Tw can be replaced by the quantity T, — pU8*¥dU/dx, which takes into
consideration the presence of streamwise pressure gradient and does not become zero at the separation poiut.
We choose the same set of similarity parameters as in the case of laminar boundary layer [1]:
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where z == 8**/(Uc); ¢ == ¢;/2 — (dU/dx)8**/U.
Equation (1.1) is subjected to the similarity transformation
n = y/6**, @ = P/(Us**) = Oln, Re**, (fu)l,
6= o[ — U 8%%) = Em, Bet*, (1),

which, unlike the laminar boundary layer, contains Mocal® Reynolds number Re** =U8** /v, Re** will hence~
forth be considered a parameter ¢he possibility of such an approach was shown in [2]).

Equations for the determination of dfy./dx coincide with the corresponding laminar boundary-layer equa~
tions

af B}
Uz—gtim (k=) fy + kF 1 Fy o+ iy =6, 1.2)

The only significant difference is the more complex expression
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which is the momentum equation expressed in terms of similarity variables. The last equation is obtained by
differentiating ¢ with respect to fy instead of x. Equation (1.1) is finally brought to the universal form without
the explicit presence of the external flow velocity U
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2. Solution to the Universal Equation ¢the First Stage of the Method). The well-known semiempirical *

equations of Prandtl fwith Van Driest correction) and Caluser are used to determine the shear stress. The

expressions for 7 in the inner f_ and outer {, regions in terms of similarity variables are given by
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where A=26; @ =0,0168. As indicated in a number of studies, the value of Karmanmixing length » increases
from 0.4 for a flat plate to ~0.6 for larger positive pressure gradients. Since the value of the parameter fy is
—1 at separation, we use the following linear dependence of n on f;: »=0.41 ~ 0.1 £; (the Reynolds number de-
pendence of u is neglected).

The universal equation (1.4) in which the normalized skin friction is determined from Eq. (2.1) was inte-
grated numerically using the marching technique with the locally single parameter approximation. The func-
tions ¢ and H were computed at each step using the velocity profiles obtained at the preceding step:
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In order to concentrate computational points close to the wall @in the region where the velocity profile has a
large gradient) a logarithmic transformation of the ordinate 7, as suggested in [3], was made. As a result of
the solution of the universal equation, a family of velocity profiles shown in Fig. 1 has heen obtained €, =
-0,60, ~0.80, —0.95 for the curves 1-4 respectively, and the computations were carried out for Re**=10%),
Analysis of the computed velocity profiles established the correctness of the "aw of 1/2% and the location of
the boundary between the characteristic regions of the turbulent boundary layer was determined (Fig. 2): I
vigeous sublayer; 11, log region; III, region of the "law of 1/2,% and IV, outer region. As the separation point
is approached the logarithmic region of the velocity profile is gradually displaced by the regionof the "the law
of 1/2,% and the coordinate of the boundary between the inner and outer regions approaches a constant value

n =1.1.
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3. Solution to the Momentum Equations ¢he Second Stage of the Method). The family of velocity profiles
and the expressions for the universal functions
¢ =1.32.10-%(1 4 0.89f)), H = 1.30/(1 4+ 0.22f)) at
—07< £, <0,

were obtained in the first stage of the similarity solution. I is followed by the second stage in which the ordi-
nary differential equations for the momentum

ar \7* &'v . 4U
af, (T;) o WU e T i)
dz dlne¢ ’
1_7 —————
T‘fl ‘9]:1

660



U & ro? UYL 107 B

Yoo

i T 1 T
! : i soand j |
| : Gy E 70 f/f,cf/2-/0‘7
DS 3 |
1 o0 \\»\_ | e
I R iy e
i 21 s
| !
I J :
I B et Tl
(4N :"—': = N ) GG 7}0
: /x
P
v [
0,25 ‘ pa },/T 0,5
| ):’x/ ® 7 o2
l o X 4
ol 0
225 Q75 &L
Fig. 3

Uy 67%/L1707 Hy Cef270%
!

O
S
& /
Q
/\l‘/g °
R (o}
\ZI\
1

=
050 —2 \o\ %0
e
025 P mra i
(]
]
o
025 075 T/
Fig. 5

obtained from Egs. (1.2) and (1.3) remain to be solved for a particular problem. This equation has been inte-
grated for a number of turbulent boundary layers [4] using the Euler —Cauchy method. Instead of an accurate
starting velocity profile an approximate initial condition f; =f,; was used at x =x; the value of §§*, partly taking
into consideration the history of the flow in the boundary layer, was taken from experimental results)., Com-
putational results of three turbulent boundary layers with positive pressure gradients (experiments 2200, 1100,
and 1200) are shown in Fig. 3-5. The experiment numbers correspond to the ones givenin the proceedings of
the Stanford conference [4]. Curves 1 in Fig. 3-5 approximate the experimental distribution of nondimensional
velocity at the outer edge of the boundary layer U/U,, curves 2-4 are the computed distribution of H, Cf/Z,

8** /1, (U, issthe free stream velocity, L is the reference length of the body), respectively. The experimental
data [4] are indicated by points in Fig. 3-5 (1: U/U; 2: H; 3: cf/2; 4: %% /L),

As is to be expected, the computations based on locally single parameter solution to the universal
equation give a very satisfactory agreement with experiment though not for all the standard set of experiments.
It is proposed to carry out the solution to the universal equation with single- and two-parameter approxima-
tions, which, as in the case of laminar boundary layer, should appreciably improve the agreement between com-~
puted and experimental results.
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